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Comparing a visual memory with new visual stimuli can bias memory content, especially when the new stimuli
are perceived as similar. Perceptual comparisons of this kind may play a mechanistic role in memory updating
and can explain how memories can become erroneous in daily life. To test this possibility, we investigated
whether comparisons can produce other types of memory distortion beyond memory bias that are commonly
implicated in erroneous memories (e.g., memory misattribution). We hypothesized that the type of memory
distortion induced during a comparison depends on the perceived overlap between the memory and incoming
stimulus—when the input is perceived as similar, it biases memory content; when perceived as the same, it
replaces memory content. Participants completed a delayed estimation task in which they compared their mem-
ories of color (Experiment 1) and shape stimuli (Experiment 2) to probe stimuli before reporting memory con-
tent. We found systematic errors in participants’ memory reports following perceived similarity and sameness
that were toward the probes and larger following perceived sameness. Simulations confirmed that these errors
were not explained by noisy encoding processes that occurred before comparisons. Instead, computational
modeling suggested that these errors were likely explained by the probabilistic replacement of the memory
by the probe following perceived sameness and integration between the memory and the probe following per-
ceived similarity. Together, these findings suggest that perceptual comparisons can prompt distinct forms of
memory updating that have been described previously and may explain how memories become erroneous dur-
ing their use in everyday behavior.

Public Significance Statement

This study demonstrates that explicitly comparing one’s memory of a visual object to a new object that is
currently perceived risks distorting the memory representation. In particular, these findings show that if
the observer judges the remembered object and new object to be similar to one another, the remembered
object becomes more alike than the new object, and if they are judged to be identical, the new object
replaces the remembered object in memory. Perceptual comparisons may therefore provide a mechanis-
tic explanation for the formation of false memories in everyday life, including critical scenarios, such as
eyewitness lineups.
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Visual working memory (VWM) describes a collection of cogni-
tive functions that allow for the temporary maintenance of prior
visual inputs for accomplishing current tasks (Cowan, 2001). In

particular, a great deal of research has illustrated the role of VWM
in facilitating the recognition of a small amount of visual informa-
tion that was previously seen (e.g., Luck & Vogel, 1997; Vogel
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et al., 2001). This ability applies to perceptual inputs that are tempo-
rarily maintained in VWM and visual information that is recalled
from long-term memory (LTM) back into VWM (e.g., Fukuda &
Woodman, 2017; Sutterer et al., 2019; Vo et al., 2022). In this
way, VWM serves as a temporary buffer that individuals use to per-
form perceptual comparisons between memory representations and
current perceptual inputs.

However, recent findings have suggested that performing percep-
tual comparisons can invoke the updating of a VWM, even if doing
so is not desired. Specifically, when asked to evaluate the perceptual
similarity between a VWM item and a perceptual probe drawn from
the same feature space, subsequent reports of the VWM item were
systematically biased toward the perceptual probe, especially when
the probe was perceived as similar (Fukuda et al., 2022). The
researchers were able to show that these similarity-induced memory
biases were explained computationally by representational integra-
tion between the memory and probe items that produced a reliable
bias across trials. Later work then expanded upon these initial find-
ings to show that biases induced during perceptual comparisons are
distinct from those observed under other types of task demands.
Specifically, when researchers directly compared report biases fol-
lowing perceptual comparisons to those observed when individuals
perceived, but ignored novel inputs during VWM maintenance (e.g.,
Rademaker et al., 2015; Sun et al., 2017; Teng & Kravitz, 2019) and
those observed when individuals maintained multiple memoranda in
VWM (e.g., Chunharas et al., 2022; Scotti et al., 2021), biases were
shown to be largest following perceptual comparisons, even after
accounting for trial-wise differences in physical stimulus similarity
and task differences in memory precision (Saito et al., 2022).
Strikingly, this observed amplification of memory biases following
perceptual comparisons was found to occur only on trials where the
probe was perceived to be similar to the target, and not when it was
perceived to be dissimilar, suggesting a causal role of perceived sim-
ilarity in the bias modulation. The same researchers also found that
memory biases following perceptual comparisons can persist across
time in LTM, such that observers confidently report memory biases
that are nearly identical in magnitude 24 hr after the comparison was
performed (Saito et al., 2023). Together, this evidence has been used
to posit that perceptual comparisons act as a cognitive mechanism
that triggers memory updating and may explain systematic memory
errors that are commonly observed in real-world scenarios, espe-
cially those where perceptual comparisons are performed explicitly
as part of an ongoing task (e.g., eyewitness lineups; Steblay &
Dysart, 2016; Wixted et al., 2016).

While these findings provide compelling evidence for a biasing
effect of perceptual comparisons, some systematic memory errors are
not amenable to a biased account. For example, many studies suggest
that systematic memory errors can also arise when individuals misat-
tribute novel perceptual details to a prior experience (Zaragoza &
Lane, 1994). These source misattributions can lead to false memories
of the prior experience in which novel details appear to replace those
that were originally encoded (Brainerd & Reyna, 2005; Mitchell &
Johnson, 2009) and are especially prominent when novel details are
processed visually rather than verbally (e.g., Aizpurua et al., 2009;
Braun & Loftus, 1998). If perceptual comparisons reflect a generalized
cognitive mechanism that can explain a broad array of memory distor-
tions, then comparing mnemonic and perceptual representations
should also be capable of inducing memory replacement by perceptual
inputs and not just memory bias.

But why might perceptual comparisons result in bias on some
occasions and replacement on other occasions? As aforementioned,
the perceived overlap between the memory and percept appears to
play a direct role in determining the memory-updating effects that
follow. In the case of perceived similarity and dissimilarity, the qual-
itative nature of memory updating is not changed between these
judgments—both result in memory bias but with different magni-
tudes. Therefore, we reasoned that changing the qualitative nature
of memory updating following comparison may require a change
in psychological experience. Specifically, we predicted that perceiv-
ing sameness between memory and percept is psychologically dif-
ferent from perceiving similarity or dissimilarity and may induce a
different type of memory updating that is akin to memory misattri-
bution, namely, memory replacement.

When observers perceive a novel input to be similar or dissimilar to
their current memory representation, this implies that the observer suc-
cessfully detected differences between the representations and ascribed
a unique identity to each of them. Conversely, when the observer per-
ceives a novel input to be the same as their current memory represen-
tation, this implies that the observer failed to detect any differences
between the representations and concluded that they were identical
instead. Leading accounts of memory misattribution and misinforma-
tion effects suggest that failures to detect discrepancies between mem-
ories and novel details play a central role in making memories
susceptible to these types of distortion (Butler & Loftus, 2018;
Greene et al., 1982; Loftus, 1992; Thomas et al., 2010; Tousignant
et al., 1986). Memory replacement following perceived sameness
would also be in line with theoretical perspectives that suggest that
memory distortions reflect unintended consequences of processing
that is typically adaptive for behavior (e.g., Schacter et al., 2011).
For example, in the case where a new input is in fact identical to
one’s memory, forming a fresh representation to replace the original
memory may help prevent forgetting in the future.

To test this possibility, we conducted two experiments in which
we asked participants to complete a delayed-estimation task in
which they compared their VWM representation of a simple visual
stimulus (i.e., color or shape) to a probe stimulus before reporting
the VWM item. The probe stimulus was either identical to the
encoded target or varied in its physical similarity. To preview our
findings, we found that perceiving similarity or sameness in a differ-
ent probe stimulus both resulted in systematic report errors towards
the probe. Critically, these errors were considerably larger following
incorrect “same” judgments than “similar” judgments—a behavioral
pattern that would naturally arise if the probe was replacing the mem-
ory item, rather than integrating with it. We conducted simulations to
address whether these systematic errors following “same” judgments
were simply due to fluctuations in the quality of target encoding that
were revealed by sorting trials based on participants’ subjective
judgments. We found that perceived sameness was dependent
upon some minimum amount of representational overlap between
the target and the probe, but “same” judgments were not merely
identifying memories that were already alike the probes due to
noisy encoding processes. We then performed a computational mod-
eling analysis to offer a mechanistic explanation for the pattern of
errors following “same” judgments. Specifically, we tested whether
errors following “same” judgments were better explained by our
hypothesized memory replacement mechanism or by the representa-
tional integration mechanism that has already been used to explain
systematic errors following ‘“similar” judgments (Fukuda et al.,
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2022; Saito et al., 2022). Consistent with our predictions, we found
unanimous evidence from our models that errors following “same”
judgments were better explained by replacement than by integration
while errors following “similar” judgments were better explained by
integration than by replacement. Taken together, the present study
provides convergent behavioral and computational evidence that
perceptual comparisons can trigger qualitatively distinct types of
memory updating depending on the perceived overlap between mne-
monic and perceptual representations.

Experiments 1-2

To test the possibility that different judgments during perceptual
comparisons invoke different memory-updating mechanisms, partici-
pants performed a delayed-estimation task in which they remembered
a simple visual stimulus in VWM and compared it with a novel probe
prior to a subsequent memory report. First, we hypothesized that
VWM reports would be biased toward the novel probe following
“similar” judgments, consistent with prior work suggesting that repre-
sentational integration occurs following perceived similarity (Fukuda
et al., 2022; Saito et al., 2022). More importantly, we hypothesized
that systematic errors in the memory report would be larger following
“same” judgments than “similar” judgments, consistent with the
recruitment of a replacement mechanism instead. We conducted the
experiment twice using a familiar (i.e., color, Experiment 1) and unfa-
miliar (i.e., shape, Experiment 2) type of visual stimulus, respectively,
to ensure that our findings were not meaningfully contaminated by
long-term categorical priors that have been shown to bias VWM rep-
resentations (e.g., Bae et al., 2015).

Method
Transparency and Openness

We report how we determined our sample size, all data exclusions,
all manipulations, and all measures in the study. All data and analy-
sis code are available at the Open Science Framework (https://osf.io/
d4q9h/). All behavioral and simulation analyses were conducted
using MATLAB, Version R2020a (Mathworks, 2020) and the
Psychophysics Toolbox extension, Version 3.0.16 (Kleiner et al.,
2007). Computational modeling analyses were conducted using R,
Version 4.0.2 (R Core Team, 2020). This study’s design and analy-
ses were not preregistered.

Participants

All participants in the experiment were undergraduate students at
the University of Toronto Mississauga that reported normal or
corrected-to-normal visual acuity and normal color vision. Each par-
ticipant provided informed consent in accordance with the proce-
dures approved by the Research Ethics Board at the University of
Toronto.

We conducted a series of planned ¢ tests to compare the magnitude
of VWM errors following different judgments made during perceptual
comparisons. Previous demonstrations of similarity-induced memory
biases report large effect sizes (i.e., Cohen’s d > 0.8; Fukuda et al.,
2022; Saito et al., 2022). However, because we were primarily inter-
ested in investigating the potential for perceptual comparisons to
induce memory replacement, which has not yet been investigated,
we anticipated a more modest effect size (i.e., Cohen’s d =0.6). A

power calculation performed with an alpha level of .05 and a statistical
power of .9 indicated that we would need at least 32 subjects to obtain
such an effect (Faul et al., 2007).

Participants were recruited on a weekly basis until the targeted
number of subjects was reached. We recruited 49 participants in
Experiment 1 (color) and 44 participants in Experiment 2 (shape).
Each participant reported their demographic information via an online
questionnaire in Qualtrics (Qualtrics Inc., 2020). For gender identity,
participants selected between male, female, and prefer not to answer.
For ethnic origin, participants reported the names of the countries that
best describe their background. Racial identity was not collected. To
extract reliable measures of memory precision and error, we assessed
the proportion of memory reports made with high confidence in the
baseline and experimental conditions for each participant. This led
to the exclusion of five participants that failed to meet our a priori
threshold of at least 15% confident trials in the baseline and experi-
mental conditions (E1: four, E2: one) and one participant that did
not report any memories confidently in either the baseline or experi-
mental condition (E1: one). The remaining participants in the sample
reported their memory with high confidence in more than 72% of tri-
als in both the baseline and experimental conditions. Ten other partic-
ipants were excluded for not following instructions (E2: two), failing
to complete the perceptual comparison on at least 85% of experimen-
tal trials (E1: three, E2: one), poor overall task performance (memory
precision in baseline condition >3SD worse than the sample mean;
El: one, E2: two), and not finishing the experiment (E2: one). Of
note, when we reconducted our analyses while including the individ-
uals that reported a low number of confident trials or had poor overall
task performance, all of the effects persisted (see the online supple-
mental materials). Data collected from the remaining 40 (31 female,
nine male, M,o. = 19.7 years old) and 37 participants (29 female,
eight male, M,,. = 19.4 years old) in Experiments 1 and 2, respec-
tively, were submitted to analysis.

Apparatus and Stimuli

Participants completed the experiment remotely using a personal
desktop or laptop computer. To ensure that experimental conditions
were satisfactory, the completion of all task procedures was moni-
tored by researchers in real-time using Zoom video conference soft-
ware (Zoom Video Communications Inc., 2020). All stimuli were
generated and presented in PsychoPy3 (Peirce, 2007), which was
run locally on each participant’s computer. Given that participants’
viewing distance could not be tightly controlled using an online pro-
cedure, we report the fixed stimulus parameters in pixels and include
the equivalent visual angle that would be assumed on a 1,920 x
1,080 pixel monitor with a 24-in. diagonal and a typical viewing dis-
tance of 60 cm.

For the color space, we sampled 360 equally-spaced color values
from Commission Internationale de 1’Eclairage L*a*b* space cen-
tered at a* =20 and b* =38 with a radius of 60. L* was set to
70. The target and probe colors for a given trial were sampled
from this color set and presented as circular color patches at 200 pix-
els (5.3°) in diameter. A circular color wheel was also created using
this set of color values—such that each color value occupied 1° of
the wheel—and was presented at 800 pixels (20.9°) in diameter
(Figure 1A).

For the shape task, we used a continuous shape space whose cir-
cular visual similarity has been empirically validated (Figure 1A; Li
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Figure 1
Experimental Schematic

A Circular Color Space

Circular Shape Space
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(A) Color and shape spaces. For illustration purposes, the shape space is shown with 12 exemplars. (B) The trial procedure for each baseline and exper-

imental condition in the paradigm. See the online article for the color version of this figure.

et al., 2020). The shape space did not contain any prototypical
shapes (e.g., triangles, squares) that could invoke long-term categor-
ical priors. The memory and probe items for a given trial were sam-
pled from 360 shapes within this stimulus set and presented at 200 x

200 pixels (5.3 x 5.3°). The shape wheel for a given trial consisted
of 18 equidistant exemplar shapes presented in a circular arrange-
ment at 720 pixels (19.9°) in diameter.

Procedure

For brevity, the description of the experimental task focuses on
the use of color stimuli. All procedural differences between color
and shape are explicitly noted.

Participants performed six blocks of 50 trials. Trials within each
block were pseudorandomized between the baseline and experimen-
tal conditions (Figure 1B). Each trial began with a target color pre-
sented at the center of the screen for 1,500 ms, which participants
were instructed to remember as precisely as possible. Target colors
were randomly sampled from the circular color space. A visual
mask was flashed for 100 ms immediately after the offset of the tar-
get color before the beginning of a maintenance interval that lasted
500 ms in the short baseline condition and 3,000 ms in the long
baseline condition and the compare condition. At the completion
of the maintenance interval, a circular color wheel was presented
(Figure 1A). The color and shape wheels were randomly rotated

on every trial in each experiment. Participants reported the original
target color from their memory by moving the mouse to the part of
the wheel where the target color was shown and clicking on the
color. In the shape task, participants were told that the shape
wheel consisted of 360 selectable shapes and that they could click
in between the shapes displayed on the wheel if needed (see
Apparatus and Stimuli section; Figure 1A). After selecting, a
response probe was displayed at the center of the screen in the
selected color. Participants were able to use the left and right
arrow keys to fine-tune the color of the response probe to match
what they remembered as precisely as possible. Afterward, they indi-
cated their confidence in the accuracy of their memory report by
pressing one of three keyboard buttons (high confidence, low confi-
dence, guessing). The accuracy of the memory report was empha-
sized and was therefore reported without an imposed time limit.

In each trial of the compare condition, participants completed a per-
ceptual comparison during the 3,000-ms maintenance interval
(Figure 1B). Five hundred miliseconds after the offset of the mask,
a novel probe color was presented at the center of the screen for
2,000 ms. The novel probe color was sampled +0, 15, or 45° away
from the memory item in the circular color space. Participants were
instructed to compare the novel probe color to the target color being
retained and judge whether the novel probe color was the same, sim-
ilar, or dissimilar to the target color. Participants reported their judg-
ment by pressing a corresponding button on the keyboard while the
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probe color was onscreen (1 for same, 2 for similar, and 3 for dissim-
ilar). The probe color remained on the screen for 2,000 ms regardless
of the report and was followed by a 500-ms blank delay before partic-
ipants reported the target color from memory.

The short and long baseline conditions each occurred in 20%
of trials, respectively, and the compare condition occurred in the
remaining 60%. Within the compare condition, the physical dis-
tance between the target and probe colors was counterbalanced
across the three possible values indicated above (0, 15, 45°). The
direction of offset from the target color was randomly assigned
trial-by-trial.

Analyses

For every trial, we computed the response error during the mem-
ory report by subtracting the degree value of the memory report in
the circular feature space from that of the original memory item.
To provide directional information about the response error relative
to the novel probe stimulus, we aligned the response errors across tri-
als such that positive error values indicated response errors in the
direction of the novel probe item (signed response errors). The direc-
tion of response errors in the baseline and identical probe conditions
were randomly assigned. To quantify the size of the average memory
error for each participant, we computed the mean signed response
error for each condition. Memory precision was calculated by com-
puting the inverse standard deviation (i.e., 1/SD) of the raw response
errors within the relevant condition.

To maximize power in our analyses, we report results across all tri-
als. However, when we repeated our analyses while including only tri-
als where participants reported being highly confident in their
memory report, all findings were preserved (see the online supplemen-
tal materials). We also report all statistical results with outliers
included. Separate analyses confirmed that removing these outliers
does not change any of the reported differences between conditions.

We report both frequentist (i.e., f values) and Bayesian (i.e., Bayes
factors) statistics to allow for providing evidence in favor of null dif-
ferences between conditions. BF; indicates evidence in favor of the
null hypothesis and BF, indicates evidence in favor of the alterna-
tive hypothesis.

The data for this study are available at the Open Science
Framework (https://osf.io/d4q9h/). This study was not preregistered.

Results

We began by separating trials according to the physical distance
between the memory and the probe (0, 15, 45°) and the judgments
made during perceptual comparisons (“same,” “similar,” “dissimi-
lar”). As can be seen in Figure 2, there was correspondence between
the physical distance separating the memory and probe and the per-
ceived overlap reported by participants.

To begin investigating the presence of similarity-induced memory
biases and the potential presence of an alternative replacement
mechanism, we identified the physical distance bins that provided
a reasonable proportion of trials for each respective judgment of
interest. For example, we noted that the 45° distance bin contained
a fair number of both “similar” and “dissimilar” judgments (“simi-
lar” color: M = 18.48 trials; “dissimilar” color: M = 39.63 trials,
“similar” shape, M = 22.19 trials; “dissimilar” shape, M = 33.14 tri-
als), thereby allowing us to test the replication of similarity-induced
memory biases in the present data set while controlling for the

physical distance between stimuli. To assess behavioral evidence
consistent with our hypothesized replacement mechanism, we
focused on the 15° distance bin which contained a fair number of
“same” and “similar” judgments (“same” color, M = 16.18 trials;
“similar” color, M = 35.95 trials, “same” shape, M = 19.59 trials;
“similar” shape, M = 34.27 trials).

Replicating Similarity-Induced Memory Biases

To validate the efficacy of our perceptual comparison paradigm, we
first sought to replicate the presence of similarity-induced memory
biases in our data set. To test this, we compared the size of memory
errors following “similar” judgments to those following “dissimilar”
judgments in the 45° distance bin. If similarity-induced memory biases
did occur, we should expect that errors following “similar” judgments
were reliably larger than those following “dissimilar” judgments
(Fukuda et al., 2022; Saito et al., 2022). Consistent with prior studies,
we found evidence of reliable memory biases following “similar” judg-
ments (Figure 3; color, M = 10.02°, 95% CI [7.26°, 12.78°], #(38) =
7.36, p <.001, Cohen’s d=1.18, BF;,=1.56 x 108; shape, M =
12.19°, [9.69°, 14.69°], #(35)=9.88, p <.001, Cohen’s d=1.65,
BF,, = 7.94 x 10®) and following “dissimilar” judgments in both stim-
ulus types (Figure 3; color, M = 3.40°, [2.13°, 4.68°], #(39) = 5.39, p
<.001, Cohen’s d=0.85, BF;q=5.07 x 103; shape, M =2.65°,
[0.18°, 5.11°], #(36)=2.18, p=.036, Cohen’s d=0.36, BF,p=
1.43). Critically, biases following “similar” judgments were larger
than those following “dissimilar” judgments (color, M = 6.52°, 95%
CI [3.66°, 9.38°], #(38) = 4.62, p < .001, Cohen’s d = 0.74, BF;, =
5.25 x 107 shape, M = 9.58°, [6.63°, 12.53°], 1(35) = 6.60, p < .001,
Cohen’s d = 1.10, BF;o = 1.20 x 10°).

“Same” Judgments Result in Larger Memory Errors Than
“Similar” Judgments

We then moved to assess whether our behavioral results showed pat-
terns of memory errors following “same” judgments that were consis-
tent with our hypothesized replacement mechanism. Specifically, if
memory replacement occurred following “‘same” judgments, we should
expect that errors following “same” judgments were larger than those
following “similar” judgments. We found evidence of memory biases
in the 15° distance bin following “similar” responses that reached sig-
nificance for shape, but not for color (Figure 4; color, M =0.73°,
95% CI [—0.46°, 1.92°], t(39) = 1.24, p = 221, Cohen’s d =0.20,
BFy; = 2.87; shape, M = 2.59°, [1.45°, 3.73°], t(36) = 4.62, p < .001,
Cohen’s d = 0.76, BF;o = 4.84 x 10%).! We also found memory errors
following “‘same” judgments that were reliable in both stimulus types
(Figure 4; color, M =11.16°, 95% CI [10.10°, 12.22°], #(38) =
21.33, p < .001, Cohen’s d = 3.42, BF,y, = 3.89 x 10'; shape, M =
7.86°, [6.32°, 9.40°], #(36)=10.34, p <.001, Cohen’s d=1.70,
BF,, = 3.41 x 10°). Consistent with our hypothesis, we found
that the errors following “same” judgments were reliably larger
than those following “similar” judgments (color, M = 10.37°, 95%
CI [8.81°, 11.94°], #(38)=13.41, p<.001, Cohen’s d=2.15,

! Given the sizable bias observed following “similar” judgments in the 45°
distance bin (Figure 3), we reasoned that the bias in the 15° distance bin may
have failed to reach significance for color stimuli because of the high physical
proximity between the target and probe that naturally limited the magnitude
of the bias following integration.
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Figure 2

Judgment Proportions Across Physical Distances

1

SAITO, BAE, AND FUKUDA
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: 47.86(7.85) | 19.59 (9.58) | 2.62(6.55)
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Note. (A) Stacked bar charts showing the mean proportion of “same,” “similar,” and “dissimilar” judg-

ments across participants at each probe distance. Proportions indicated by the height of the bars are
reported in (B) as mean percentages of trials within a distance bin (%) and mean trial counts (n) with
respective standard deviations in parentheses. See the online article for the color version of this figure.

BFo=1.12 x 10"%; shape, M = 5.27°, [3.30°, 7.25°], #(36) = 5.41,
p <.001, Cohen’s d = 0.89, BF;o =4.51 x 10%).

Discussion

We predicted and found that “similar” and “same” judgments made
during perceptual comparisons resulted in systematic memory errors in
the direction of the probe. We found that systematic errors following
“similar” judgments were larger than those following “dissimilar” judg-
ments, confirming the presence of similarity-induced memory biases.
More importantly, we found that errors following “same” judgments
were larger than those following “similar” judgments, consistent with
the behavioral patterns that would be expected if perceived sameness
triggered memory replacement rather than memory-probe integration.

However, these behavioral results alone only provide tentative sup-
port for the existence of distinct memory-updating mechanisms. In
addition to the present hypothesis, the observed difference in the
size of memory errors between “same” and “similar” judgments
may also be explained by a more trivial account in which memories
were not changed at all following perceived sameness. Instead,
“same” judgments may have merely identified memories that were
noisily encoded to be like the probe before the perceptual comparison
took place. In this case, sorting trials based on subjective judgments
tracked differences in the quality of initial encoding rather than a dis-
tortion caused by the perceptual comparison (see Fukuda et al., 2022
for a direct investigation of this issue in “similar” judgments). In order
to conclude that perceived sameness actually triggered memory updat-
ing, we first needed to rule out this encoding accuracy account.

Simulating VWM Errors as Fluctuations in Encoding
Accuracy

In order for a VWM and probe stimulus to be perceived as the
same, the encoded target and probe representations must overlap
with one another. If there is not a sufficient amount of overlap
between the representations, it is unlikely that the target and probe
will be perceived as identical and individuals will likely judge
them to be “similar” or “dissimilar” instead. This prerequisite of rep-
resentational overlap may be sufficient to explain the patterns of
memory errors that we observed in behavior. That is, perceived
sameness between memory and percept may not have triggered
memory replacement, but instead identified instances where partici-
pants’ VWM representation happened to be noisily encoded to be
like the probe before the probe was even perceived. If this is the
case, then the difference in memory errors observed following
“same” and “similar” judgments does not reflect dissociable types
of memory updating that were induced by perceptual comparisons,
but instead reflects artificial systematicity in participants’ memory
reports that was introduced by sorting trials based on participants’
subjective judgments (see Fukuda et al., 2022 for a direct investiga-
tion of this issue in “similar” judgments).

To rule out this explanation, we conducted a two-pronged analysis
of participants’ memory reports following “same” judgments. First,
we show that memory replacement and the encoding accuracy
account described above are not mutually exclusive. To do this, we
highlight a behavioral pattern observed in Experiments 1 and 2 that
is consistent with the encoding accuracy account and then perform
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Figure 3

Systematic VWM Errors Following “Similar” and “Dissimilar” Judgments
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(A) Signed response distributions for memory reports following “similar” and “dissimilar” judgments

in the 45° probe condition. For illustration purposes, we plotted the proportion of responses for a given signed
offset by calculating the mean response proportion across a 30° window centered at the offset. Positive offsets
indicate memory errors toward the probe. The inset shows a close-up of the peak of each distribution. Shaded
regions surrounding the distribution curve indicate within-subject standard errors of the mean (Cousineau,
2005). The vertical black and red (dark) dashed lines indicate the location of the target and the probe in the
feature space, respectively, across trials. (B) Boxplots of the mean signed response error in each judgment con-
dition with corresponding density distributions. Colored dots to the right of each boxplot indicate the mean error
for a given participant. VWM = visual working memory; Exp. 1 = Experiment 1; Exp. 2 = Experiment 2. See

the online article for the color version of this figure.

w3 < 001,

a proof of concept using simulations to show that this pattern is not
inconsistent with memory replacement. Specifically, the encoding
accuracy account predicts that trials where an identical probe (i.e., sep-
arated by 0° from the target) was correctly endorsed as the “same”
should result in more precise memory reports, since perceived same-
ness should only be possible if participants encoded an accurate rep-
resentation of the target. We show that memory reports were indeed
more precise following correct “same” judgments than they were in
the baseline condition, where poorly encoded target representations
were not filtered in any way, and that these improvements in precision
can occur even when the probe replaces the encoded target.

In the second prong of our analysis, we show that the encoding accu-
racy account cannot fully explain memory errors observed following
inaccurate “‘same” judgments without the need for an additional mech-
anism. Using the same simulation procedure, we tested whether the
distribution of memory errors observed following “same” judgments
in the 15° probe condition could be recreated just by sampling memory
reports from the baseline condition that were near the probe. In doing
so, we found that filtering responses based on encoding accuracy was
unable to recapitulate erroneous report patterns. Thus, in the following
analyses, we show that encoding processes help determine the repre-
sentational overlap that is perceived during perceptual comparisons,
but these processes are not sufficient in explaining systematic memory
errors that follow from comparisons.

Method
Simulation Analysis

In this approach, we implement the assumptions of the encoding
accuracy account to simulate a collection of memory reports following
“same” judgments that are based solely on noisy encoding processes.
The crux of our logic is that memory errors determined at the time of
encoding occur in all conditions, including the baseline conditions.
Therefore, if the errors observed following perceived sameness solely
reflect fluctuations in encoding accuracy, we should be able to
re-produce the observed pattern of memory reports by sampling
reports from the delay-matched short baseline condition that would
have been near the location of the probe in the feature space (see
Figure 5A and B for a visual illustration). Note that the delay between
encoding and reporting in the short baseline condition was identical to
the delay between encoding and comparisons in the experimental con-
ditions, thereby allowing us to approximate the accuracy of the target
at the time of the comparison using observed data.

To simulate a collection of memory reports that follow the logic of
the encoding accuracy account, we sampled memory reports from
the short baseline condition that would have been immediately sur-
rounding the location of the hypothetical probe in the feature space
in the experimental condition. The number of samples that were
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Systematic VWM Errors Following “Same” and “Similar” Judgments
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(A) Signed response distributions for memory reports following “same” and “similar” judgments

in the 15° probe condition. For illustration purposes, we plotted the proportion of responses for a given
signed offset by calculating the mean response proportion across a 30° window centered at the offset.
Positive offsets indicate memory errors toward the probe. The inset shows a close-up of the peak of
each distribution. Shaded regions surrounding the distribution curve indicate within-subject standard errors
of the mean (Cousineau, 2005). The vertical black and red (dark) dashed lines indicate the location of the
target and the probe in the feature space, respectively, across trials. (B) Boxplots of the mean signed
response error in each judgment condition with corresponding density distributions. Colored dots to the
right of each boxplot indicate the mean error for a given participant. VWM = visual working memory;
Exp. 1 = Experiment 1; Exp. 2 = Experiment 2. See the online article for the color version of this figure.

w3 ) < 001,

drawn from the baseline condition was based on the number of
“same” responses that were made by the participant.

For example, imagine a participant that endorsed 15°-offset
probes to be identical (“same”) on 30% of trials in the 15° probe con-
dition. According to the encoding accuracy account, this would indi-
cate that the participant encoded target 6 as 0+ 15° prior to the
perceptual comparison on 30% of trials. To simulate this, we deter-
mined the range of response offsets surrounding 15° in the baseline
condition that made up 30% of trials. We then multiplied the propor-
tion of responses at each response offset within this range by the
number of “same” responses that were made in the experimental
condition. Participants that reported less than 10 “same” responses
in the 15° probe condition were excluded from the respective simu-
lation (color: n = 8§ exclusions; shape: n = 4 exclusions). All partic-
ipants reported more than 10 “same” responses in the 0° probe
condition and were included in the respective simulation.

Results

Improved Report Precision Is Compatible With Memory
Replacement

Figure 6A shows the distribution of response errors that were
observed following “same” judgments made to an identical probe
stimulus. As can be seen, memory reports following these accurate

“same” judgments were more tightly clustered around the zero-
centered target than those made in the delay-matched short baseline
condition. When we statistically compared the precision of the mem-
ory reports observed following accurate “same” judgments to those
in the short baseline condition, we found evidence for higher preci-
sion in the prior (Figure 6B; color, M =0.019, 95% CI [0.010,
0.027], 1(39) =4.45, p <.001, Cohen’s d =0.70, BF;p =3.40 x

10%; shape, M =0.013, [0.002, 0.025], #(36)=2.43, p=.020,
Cohen’s d = 0.40, BF;o =2.32). This pattern is consistent with a
prediction made by the encoding accuracy account which asserts
that perceived sameness depends on some minimum amount of rep-
resentational overlap between the representations that effectively fil-
tered out poorly encoded targets (Figure SA).

To demonstrate that memory replacement is compatible with this
finding, we conducted a simulation analysis to show that memory pre-
cision is higher in the identical probe condition even when the probe
replaces the target. We simulated target representations for every trial
by sampling responses from the short baseline condition that were
near 0° (Figure 5A; see the Method section). Because the probe stim-
ulus was physically identical to the target stimulus in these trials, we
simulated independent encoding of the probe by duplicating the sim-
ulated targets and shuffling their order randomly. Finally, we simu-
lated memory replacement using a parameter that determined how
often a given memory report in the simulation was based on the
probe rather than the target. Note that, in principle, the exact frequency
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Figure 5
Simulating Memory Reports Based on Encoding Accuracy
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Note. An encoding accuracy account of memory reports following perceived sameness may be simulated by sampling from a range of response errors sur-
rounding the hypothetical probe in the short baseline condition where the sampled response is assumed to be close enough to the hypothetical probe that it is
endorsed as being the “same.” (A) When the probe is identical to the target, this process filters out poorly encoded target representations that are unlikely to be
perceived as the “same.” As a result, the number of responses along the tails of the response distribution is reduced, resulting in a greater proportion of
responses clustered around the zero-centered target. (B) When the probe is different from the target, “same” judgments identify poorly encoded target repre-
sentations that were near the probe prior to probe onset. As a result, response errors following “same” judgments are clustered around the probe, mimicking

memory distortion. See the online article for the color version of this figure.

of memory replacement should not meaningfully influence the likeli-
hood of increased precision except by chance alone. Figure 7 shows
the results of the simulation when replacement was set to occur ran-
domly in 50% of trials. Unsurprisingly, we found a clear increase in
precision for the simulated responses relative to the observed
responses in the short baseline condition. Additional iterations of
this procedure confirmed that precision is improved regardless of
how often replacement is set to occur in the simulation (see the online
supplemental materials). Based on this proof of concept, we con-
cluded that memory replacement is not inherently in conflict with
the encoding accuracy account.

Errors Following Inaccurate “Same” Judgments Are Not
Explained by Encoding Accuracy

Given that the encoding accuracy account was capable of explain-
ing improvements in memory precision following identical probes
without the need for memory updating, does this mean that memory
errors following inaccurate “same” judgments can also be explained
without memory updating? If so, we should be able to reconstruct the
pattern of memory errors observed following “same” judgments in
the 15° probe condition using the same simulation approach as
before (Figure 5B; see the Method section).

Figure 8 shows the responses generated by the simulation plotted
against the responses made by participants in the 15° probe condition.
Simulated responses were shifted in the direction of the 15° probe,
mimicking the shift that was present in participants’ responses.
However, because the simulated responses were necessarily sampled
along the positive-going tail of the short baseline condition, there was
a positive skew in the simulated responses (color: 0.53; shape: 0.32)
that stood in stark contrast to the negative skew in the observed
responses (color: —1.88; shape: —2.95). Visual inspection of the
response distributions also revealed a clear difference in the precision

of the simulated responses compared to those made by human observ-
ers. When we conducted Kolmogorov—Smirnov (KS) testing to assess
whether the simulated and observed distributions were drawn from the
same underlying distribution, we found evidence against this conclu-
sion (color, d = 0.18, p < .001; shape, d = 0.21, p <.001). We then
downsampled both distributions from 360 bins (1°/bin) to 72 bins (5°/
bin) to counteract potential oversensitivity in our initial KS test.
However, when we reconducted the KS test again on the down-
sampled data set, the difference persisted (color, d =0.16, p < .001;
shape, d =0.19, p <.001). This suggests that the large, systematic
report errors made following inaccurate “same” judgments were not
merely tracking systematic differences in encoding accuracy and
that another mechanism is required to explain these response patterns.

Discussion

We conducted simulations to address whether memory errors
reported by participants were explained by the extent to which
encoding accuracy differed systematically between subjective judg-
ments. In doing so, we found that perceived sameness between a
VWM and novel input requires some minimum amount of overlap
between their representations. When the encoded target and novel
input are physically identical, perceived sameness constrains the
memory set to only include VWMs that were accurately encoded,
resulting in precise reports of the target. Importantly, because the tar-
get and input were identical, reports are precise even if the input
replaces the target in VWM. However, when the encoded target
and novel input are different, constraining the memory set to only
include targets that were noisily encoded to be like the input pro-
duces a pattern of memory reports that is meaningfully different
from the one observed in behavior.

One may be tempted to explain the mismatch between the simu-
lated and observed response distributions by highlighting other
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Figure 6
Increased Report Precision Following Accurate “Same” Judgments
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(A) Signed response distributions for memory reports following “same” judgments in the identical

probe condition and short baseline condition. For illustration purposes, we plotted the proportion of responses
for a given signed offset by calculating the mean response proportion across a 30° window centered at the
offset. Shaded regions surrounding the distribution curve indicate within-subject standard errors of the
mean (Cousineau, 2005). The vertical black and red (dark) dashed lines indicated the location of the target
and probe in the feature space, respectively, across trials. (B) Boxplots with corresponding density distribu-
tions depicting the mean response precision in the short baseline condition and following “same” judgments
to an identical probe. Colored dots to the right of each boxplot indicate the mean precision for a given partic-
ipant. Exp. 1 = Experiment 1; Exp. 2 = Experiment 2. See the online article for the color version of this

figure.
*p< .05, FEp< 00
potential sources of noise that were not accounted for in the simulation
procedure. For example, memory reports in the delay-matched base-
line condition that were used to simulate target representations may
have been contaminated by motor and decision noise that would not
have yet been present at the time of the comparison in the actual exper-
iment. As a result, simulating responses from this baseline condition
may not have fairly approximated the true accuracy of the target.
While it is true that the current simulation procedure did not account
for these sources of noise, it is highly unlikely that noise was respon-
sible for the mismatch that was observed here. For one, both the
observed and simulated response distributions each contain some
amount of motor and decision noise since both are based on actual
responses made by participants using an identical report procedure.
Second, some results of the simulation simply cannot be explained
by unsystematic sources of noise that increased the dispersion of
responses in one condition more than the other. For example, opposite
skewing directions in the observed and simulated response distribu-
tions can only be explained by a mechanism that is capable of altering
the shape of the distribution. In the following section, we report the
results of a computational modeling analysis where we demonstrate
that the systematic variability in observers’ memory reports following
perceived similarity and perceived sameness are better approximated
by two distinct memory updating mechanisms, namely representa-
tional integration (Fukuda et al., 2022; Saito et al., 2022) and represen-
tational replacement, respectively.

Modeling VWM Errors Following Perceptual
Comparisons

To investigate the computational mechanisms responsible for VWM
errors following perceived similarity and sameness, we identified two
plausible models. First, we hypothesized that errors following “‘simi-
lar” judgments would be better fit by a joint density (JD) model
which assumes that the target and probe representations are integrated
to form a joint representation that is biased toward the probe (Bae et al.,
2015; Fukuda et al., 2022; Saito et al., 2022). Second, we hypothesized
that errors following “same” judgments would be better fit by a mixture
density (MD) model which assumes that the probe representations
probabilistically replace the target representations, leading to responses
that appear biased but are underpinned by intact representations
(Fukuda et al., 2022; Saito et al., 2022; see Bays et al., 2009 for a sim-
ilar conceptualization). Together, we sought to illustrate that differ-
ences in the magnitude of memory errors between ‘“‘similar” and
“same” judgments reflect the consequences of qualitatively-distinct
memory-updating mechanisms.

Method
JD Model

To account for systematic errors in VWM reports, the JD model
assumes that participants’ VWM representation of the target is
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Figure 7
Improved Report Precision as a Function of Fluctuations in
Encoding Accuracy
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Note. Signed response distributions of simulated responses based on
encoding accuracy and observed responses in the short baseline condition.
In the simulated response distributions, responses along the tails are
reduced compared to the baseline, resulting in a greater proportion of
responses surrounding the target and identical probe. The inset bar chart
shows the precision of the simulated responses compared to the observed
baseline responses. In both color and shape, response precision was higher
in the simulated response distribution despite the inclusion of probabilistic
memory replacement, which was set to 50% frequency in the present figure.
Exp. 1 = Experiment 1; Exp. 2 = Experiment 2. See the online article for
the color version of this figure.

integrated with the probe representation during perceptual compari-
sons. This integration process forms a JD distribution of the two rep-
resentations that the participant randomly samples from at the time of
the memory report. This model conceptualization is adopted from
previous studies that demonstrated representational integration
between visual representations (Bae et al., 2015; Fukuda et al.,
2022). We construct and fit the JD model in three steps:

First, we construct the target representation by assuming a noisy
representation (X)) of the original target stimulus (Sy) that follows
a von Mises distribution (¢) centered at the location of the target
stimulus in the feature space with a given precision (k).

pXmlSm) = d(XmlSm + i, knm)- €y

In the formula, the von Mises distribution contains parameters [
and K. | indicates the center of the distribution and is implemented
to allow for shifting of the distribution relative to the actual stimulus.
Here, 1 is set to zero because we do not assume any systematic shift in
the target representation that is initially encoded. « indicates the con-
centration of the von Mises distribution, which corresponds to the pre-
cision of the target representation. xy; was obtained by fitting a
standard mixture model (Zhang & Luck, 2008) to the memory reports

Figure 8
Systematic VWM Errors as a Function of Fluctuations in Encoding
Accuracy
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Note. Signed response distributions of simulated response errors and
observed response errors following “same” judgments. VWM = visual
working memory; Exp. 1 =Experiment 1; Exp. 2 = Experiment 2. See
the online article for the color version of this figure.

in the delay-matched short baseline condition where no probe was pre-
sented. This allowed us to base our precision estimate on observable
behavior and increase the efficiency of our parameter search process.
Second, we construct the probe representation by assuming a
noisy representation (Xp) of the probe stimulus (Sp) that again fol-
lows a von Mises distribution (¢) centered at the location of the
probe stimulus in the feature space with a given precision (kp).

P(Xp|Sp) = d(Xp|Sp + W, Kp). 2

u again indicates the center of the von Mises distribution and is set to
zero since we do not assume any systematic shift in the probe represen-
tation that is initially encoded. kp indicates the precision of the probe
representation and was fit within the model as a free parameter. xp
was set to vary in the parameter search process from 0.1 to 2 times
kM in increments of 0.1 and from 2 to 10 times Ky in increments of
0.5, yielding 36 possible precision estimates. That is, the precision
of the probe was allowed to vary from 10% to 1,000% of the memory
item. Separate analyses confirmed that varying the search range in our
fitting procedure does not change the results of the model comparisons.

Third, we construct an integrated representation of the memory
and probe items that is assumed to follow a joint density of the mem-
ory and probe distributions (Xjp).

pXm|Sm)p(Xp|Sp)
Y7 XmlSmp(XpSp)

pXiplSm, Sp) = 3)

This JD distribution is constructed by a straightforward multiplica-
tion of the target (1) and probe (2) density functions. The four



k3]
=]
2
7
<
S
)
=]
S
<=
)
>
1)
=W
)
2
2
>
o
=
2
=)
>
j=¥
o
5]
2
o
=]
5]
(=]
k]
)

=

personal use of the individual user

lely for the

=
()
=)
=1
Q
2]
)

12 SAITO, BAE, AND FUKUDA

parameters in the joint density function are identical to those in (1) and
(2). Thus, we estimated one free parameter in the JD model (i.e., Kp).

MD Model

To account for systematic errors in the VWM reports, the MD
model assumes that participants’ VWM representation of the target
is sometimes replaced by the probe representation, such that individ-
uals rely on the probe representation during the memory report.
Thus, the model assumes that perceptual comparisons do not change
the underlying memory representations, but instead change the like-
lihood that the probe representation will be used to represent the
original target stimulus.

We construct and fit the MD model in three steps. Steps 1-2 are
identical to the JD model. The third step is as follows:

PXmix|Sm, Sp) = ap(Xm[Sm) + (1 — a)p(Xp|Sp) “4)

o is used as a mixture parameter that estimates the proportion of trials
where the memory report was based on the target representation (1). The
remaining trials are assumed to be based on the probe representation (2)
(i-e., 1—0). oo was allowed to vary between 0 and 1 in increments of 0.05,
yielding 21 possible mixture parameters. That is, the percentage of
memory-based reports was allowed to vary from 0% (100% probe-
based) to 100% (0% probe-based) in 5% increments. All other aspects
of the MD model are identical to the JD model. Thus, we estimated
two free parameters in the MD model (i.e., o and xp).

Procedure

We focused our model fitting for “same” responses on the 15°
probe condition since there were too infrequent “same” responses
in the 45° probe condition (see Figure 2). Likewise, we focused
our model fitting for “similar” responses on the 45° probe condition
where we found a reliable shift in the response distribution that was
less apparent in the 15° probe condition (see Figure 3).

To limit contamination by trials where participants relied on guess-
ing and other nonmnemonic response strategies (e.g., Pratte, 2019),
we focused our model fitting on trials where participants reported
being highly confident in their memory report. Given the limited num-
ber of confident “same” and “‘similar” judgments per subject (“‘same”
color: M =13.80 trials; “same” shape: M = 16.65 trials; “similar”
color: M = 14.35 trials; “similar” shape: M = 15.38 trials), we maxi-
mized power in both of our model fitting procedures by aggregating
responses across subjects and fitting the models to the group data.
We also removed outlier trials that contained memory errors that
were >2.5 SD above or below the mean response error of the group
(“same” color: eight [1.45%] trials; “same” shape: nine [1.46%] trials;
“similar” color: 16 [2.79%] trials; “similar” shape: 12 [2.11%] trials)
since these trials can disproportionately skew formal model fit statis-
tics (e.g., log likelihood; Huber, 2004). Indeed, when we reconducted
our modeling with these outlier trials included, all model fits were
weakened (see the online supplemental materials).

To construct a density distribution of the observed data, we used
participants’ signed response errors (in radians) to compute kernel
density estimates at 10,000 equally spaced points along the circular
space (i.e., —pi to pi; bin size = 0.0006 radians). We computed the
same number of kernel density estimates for the best-fitting model
distribution by reconstructing the predicted distribution using the
parameters identified in our fitting procedure.

To find the best-fitting free parameters within each model, we cal-
culated the sum of squared differences (i.e., Z[Observed—Expected]2
or sum of squared O-E) between the model density distribution that
was constructed on each parameter search iteration and the observed
density distribution and selected the parameter values that best mini-
mized the difference between the distributions. We then compared the
best-fitting JD and MD models using formal model fit statistics (i.e.,
sum of the log-likelihood or sum of the log LH, Akaike Information
Criterion or AIC, Bayesian Information Criterion or BIC).

Results

First, we fit both models to errors observed following “similar”
judgments in the 45° probe condition to test whether representational
integration provided a better explanation for these errors than repre-
sentational replacement. As can be seen in Figure 9, the bias observed
across trials was accomplished by a positive shift in the central
Gaussian toward the probe stimulus. Importantly, a positive shift in
the central Gaussian can be produced by representational integration,
since this process shifts the location of the target representation in the
feature space, but cannot be produced by probabilistic replacement,

Figure 9
Computational Modeling of VWM Response Errors Following
“Similar” Judgments
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iments overlaid on the observed data. For visualization, the observed data in
each experiment are plotted as a histogram with 90 bins (0.07 radians/bin).
The x-axes are abbreviated to —120 to 120° surrounding the zero-centered
target to emphasize the shape of the distributions. Vertical black and red
(dark) dashed lines indicate the location of the target and probe stimuli in
the feature space across trials, respectively. Vertical orange (dark) and
gray solid lines indicate the mean response error in the best-fitting JD
and observed data distributions, respectively. Formal model fit statistics
and the sum of squared differences between the observed and best-fitting
model data are reported with boldface values indicating the preferred
model. Free parameters identified within the best-fitting models are
reported below the fit statistics. VWM = visual working memory; Exp.
1 = Experiment 1; Exp. 2 = Experiment 2; JD = joint density; MD = mix-
ture density. See the online article for the color version of this figure.
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which creates a bimodal response pattern instead. There is no apparent
evidence of bimodality in either of the observed response distribu-
tions. However, because the MD model assumes a bimodal response
pattern, the best-fitting MD models were incapable of re-producing
shifted central Gaussians and attempted to compensate for this by
assuming that replacement occurred in only 25% of trials (i.e., alpha
=.75) and that the responses based on the probe representation were
widely distributed, producing long, positive-going tails in the distribu-
tion that was not present in the observed data. While the JD model did
a superior job at capturing the positive shift in the central Gaussian, it
did struggle to account for the skewing in the positive-going tail. This
was likely due to fitting the model at the aggregate “super subject”
level, which eliminated individual differences in VWM precision
that may have influenced the magnitude of the bias. Note that previous
studies that have fit the JD model at the individual subject level were
able to reproduce this skewing in the probe-side tail (Fukuda et al.,
2022). Finally, both the JD and MD models assumed an imprecise
probe representation across trials, consistent with the central tenet of
the encoding accuracy account which asserts that the subjective per-
ception of overlap depends on some minimum amount of representa-
tional overlap. Because we fixed the precision of the target across trials
in our model fitting by using the precision observed in the delay-
matched baseline condition (see the Method section), encoding accu-
racy is accounted for in the probe representation instead.

The sum of squared differences measures in color and shape cor-
roborated this qualitative assessment (color, JD = 149.242, MD =
234.994; shape, JD = 156.097, MD = 247.074), confirming that the
shape of the best-fitting JD model more closely resembled the
shape of the observed data than the best-fitting MD model. The
sum of log-likelihood (color, JD = —52.944, MD = —101.814;
shape, JD = —73.229, MD = —76.660), AIC (color, JD = 107.888,
MD = 207.627; shape, JD = 148.459, MD = 157.320), and BIC
(color, JD=112.213, MD=216.276; shape, JD=152.781,
MD = 165.965) measurements all unanimously preferred the JD
model over the MD model. Thus, consistent with prior studies
(Fukuda et al., 2022; Saito et al., 2022), we find that response errors
following “similar” judgments were better explained by representa-
tional integration than probabilistic replacement.

We then moved to complement these initial findings by providing
divergent evidence favoring the MD model in memory reports follow-
ing “same” judgments in the 15° probe condition. Figure 10 shows the
best-fitting JD and MD distributions along with the distribution of
observed response errors following “same” judgments in the 15°
probe condition. Unlike the 45° probe condition, the target and
probe representations in the 15° probe condition were highly overlap-
ping, resulting in a predicted MD distribution that was negatively
skewed toward the probe rather than comprised of distinct bimodal
peaks. This negative skewing in the MD distributions is consistent
with the negative skewing present in the observed distributions
(observed color: —1.90; observed shape: —2.93) and was critical in
allowing the MD model to account for response errors that fell beyond
the probe (i.e., errors > 15°). In contrast, the JD model struggled to
account for response errors beyond 15° since integration necessarily
produces a representation whose center falls between the target and
the probe (i.e., 0° < center < 15°). We also noted that the JD and
MD models now assumed probe precision to be roughly equal to or
higher than target precision. Given the close physical proximity
between the target and probe, it is reasonable that both representations
could be encoded precisely, yet still considerably overlapping.

Figure 10
Computational Modeling of VWM Response Errors Following
“Same” Judgments
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iments overlaid on the observed data. For visualization, the observed data in
each experiment are plotted as a histogram with 90 bins (0.07 radians/bin).
The x-axes are abbreviated to —120 to 120° surrounding the zero-centered
target to emphasize the shape of the distributions. Vertical black and red
(dark) dashed lines indicate the location of the target and probe stimuli in
the feature space across trials, respectively. Vertical teal and gray solid
lines indicate the mean response error in the best-fitting MD and observed
data distributions, respectively. Formal model fit statistics and the sum of
squared differences between the observed and best-fitting model data are
reported with boldface values indicating the preferred model. Free parame-
ters identified within the best-fitting models are reported below the fit statis-
tics. VWM = visual working memory; JD = joint density; MD = mixture
density; Exp. 1 =Experiment 1; Exp. 2 = Experiment 2; AIC = Akaike
Information Criterion; BIC = Bayesian Information Criterion; LH =
Likelihood; O-E = Observed minus Expected. See the online article for
the color version of this figure.

Consistent with our qualitative assessment of the distributions, the
sum of squared differences measures was lower in the MD model
than in the JD model (color, JD =412.908, MD = 45.507; shape,
JD =167.196, MD = 98.863). Formal model comparisons using
the sum of log-likelihood (color, JD = —0.012, MD = 133.682;
shape, JD=9.062, MD =119.091), AIC (color, JD=2.024;
MD = —263.363; shape, JD =—16.124, MD = —234.182), and
BIC (color, JD = 6.323; MD = —254.765; shape, JD = —11.716,
MD = —225.364) measurements all unanimously preferred the
MD model over the JD model. Therefore, in conjunction with the
modeling results for “similar” response errors, we find clear compu-
tational evidence that differences in the magnitude of response errors
following “same” and “similar” judgments reflected the recruitment
of qualitatively distinct memory updating mechanisms.

General Discussion

In the present experiments, we tested the prediction that using
memories in perceptual comparisons can trigger distinct forms of
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memory updating. Specifically, we predicted that perceived similarity
between mnemonic and perceptual representations would result in
representational integration, as demonstrated previously (Fukuda
et al., 2022; Saito et al., 2022, 2023), and that perceived sameness
would result in probabilistic replacement by the perceptual represen-
tation. We based this prediction on the fact that perceived sameness
between sequential stimuli indicates a sense of shared identity that
is fundamentally untrue for perceived similarity and allows individu-
als to rely on the more recent stimulus to facilitate their behavioral
goals (e.g., Schacter et al., 2011). This framework is also consistent
with longstanding literature showing that everyday memory errors
can occur as a result of misattributing new perceptual details to a
prior experience, especially when individuals fail to detect differences
between their memory and these novel details (Butler & Loftus, 2018;
Greene et al., 1982; Loftus, 1992; Thomas et al., 2010; Tousignant
et al., 1986; Zaragoza & Lane, 1994). In these cases, novel details
do not bias existing memories, but replace them.

In accordance with our predictions, we found that memory reports
were shifted towards the probe following “same” and “similar” judg-
ments and that this shift was larger when the memory and probe were
perceived to be the same. We conducted simulations to test whether
these sizable errors following “same” judgments reflected systematic
differences in the quality of initial memory encoding rather than
updating driven by the perceptual comparison (see Fukuda et al.,
2022 for a direct investigation of this issue in “similar” judgments).
These simulations revealed that perceiving sameness depends on
some minimum amount of representational overlap between the
memory and probe that can explain higher report precision following
accurate “same” judgments but cannot fully capture errors that occur
following inaccurate “same” judgments. We then used computa-
tional modeling to try and map memory errors following “same”
and “similar” judgments to two qualitatively distinct mechanisms
that have been described in prior studies (Bae et al., 2015; Bays
et al., 2009; Fukuda et al., 2022; Saito et al., 2022). In doing so,
we showed that systematic response errors following “same” judg-
ments were better captured by representational replacement than rep-
resentational integration, while the vice versa was true for errors
following “similar” judgments. Together, these findings help to
advance the burgeoning perspective that perceptual comparisons
underlie memory distortions that are observed in everyday life,
including those that are not amenable to a biased account.

Upon initial consideration, it may appear surprising that changing
the judgment during a perceptual comparison changes the form of
memory updating that transpires. From a signal detection perspective,
perceived sameness and similarity are not fixed categorical states
along the continuum of representational overlap. Rather, the shift
from perceived similarity to sameness is assumed to occur when the
amount of representational overlap between the memory and percept
exceeds a decision criterion that is set by the observer to fulfill the
demands of the comparison (Morrell et al., 2002; Wixted, 2007).
Decision criteria are known to be sensitive to changes in task context,
such that observers can become more liberal or conservative in what
they endorse as being the same. In principle, this could mean that the
decision (i.e., judgment) made during a perceptual comparison could
change independently of the psychological experience that drives
memory updating (i.e., perceived overlap). In the present study,
because we manipulated the likelihood of perceived sameness and
similarity by changing the physical similarity between the target
and the probe on each trial, changes in the judgment likely coincided

closely with changes in the perceived overlap. However, other studies
have shown that the mnemonic consequences of perceived sameness
are observed even in cases when only decision criteria are manipu-
lated. For example, studies of eyewitness testimony have shown that
observers can be made more likely to falsely identify an innocent sus-
pect within a lineup just by manipulating how well the other “fillers”
in the lineup resemble the perpetrator (Colloff et al., 2016; Fitzgerald
et al., 2013; Wixted & Mickes, 2014). In these circumstances, even
though the likelihood of perceiving sameness is inflated by a deci-
sional bias and not by the amount of representational overlap, eyewit-
nesses tend to confidently sustain these false identifications across
time, suggesting that observers still experienced perceived sameness,
which resulted in memory replacement (Roediger & DeSoto, 2015;
Roediger et al., 2012; Wixted et al., 2015). Thus, while judgments
made during perceptual comparisons can change independently of
representational overlap, the correspondence between the judgment
and the underlying psychological experience may be preserved.

However, the case for perceptual comparisons as a cognitive
mechanism requires more investigation. For example, it is unknown
whether judgments made during perceptual comparisons must be
explicit for distinct memory updating to emerge. In previous studies
of comparison-induced distortion, participants were always asked to
endorse whether the percept was similar or dissimilar to the target mem-
ory (Fukuda et al., 2022; Saito et al., 2022, 2023). In those investiga-
tions, systematic errors observed following comparisons were always
explained by a modulation in naturally occurring memory biases fol-
lowing perceived similarity. Is it possible that omitting the option to
endorse the probe as the “same” in those studies reduced or eliminated
the likelihood of perceived sameness and, as a result, memory replace-
ment? The answer to this question could depend on whether systematic
report errors following “same” judgments reflect bona fide changes in
the memory representation at the time of the comparison or changes
in decisional processes at the time of the memory report. Previous
work has shown that report biases following “similar” judgments can-
not be explained by trivial report strategies in which observers intention-
ally fine-tune their responses toward the probe (Saito et al., 2023; see
also Chunharas et al., 2022). Nonetheless, it could be the case that
explicit judgments influence observers’ weighting of the probe stimulus
as a decisional prior when memory representations are read out as
behavioral reports (see, e.g., Brady et al., 2018; Hemmer & Steyvers,
2009; Honig et al., 2020; Huttenlocher et al., 2000). The most direct
approach for addressing each of these questions will be to incorporate
a neuroimaging method that would allow researchers to measure per-
ceived overlap implicitly while tracking the contents of VWM before,
during, and after probe perception (e.g., Bae, 2021; Harrison & Tong,
2009; Rademaker et al., 2019; Serences et al., 2009).

A comprehensive framework for predicting perceived overlap
during perceptual comparisons also remains wanting. Across multi-
ple experiments, we find that even when the physical distance
between the target and probe is held constant, participants’ judg-
ments during perceptual comparisons vary from trial to trial
(Fukuda et al., 2022; Saito et al., 2022). It is enticing to assume
that this variability is determined exclusively by the precision of
the memory representation at the time of the comparison. For exam-
ple, in a recent study, researchers were able to predict the occurrence
of attraction and repulsion biases between VWM representations
based on trial-wise manipulations of memory precision and partici-
pants’ subjective confidence (Lively et al., 2021). However, we have
shown that memory errors following perceptual comparisons are
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reliably larger than those following perceptual interference and
simultaneous maintenance, even when baseline precision is matched
between tasks and participants are highly confident in their memory
reports (Saito et al., 2022). Moreover, we found in the present exper-
iments that memory errors following “same” judgments could not be
readily explained by imprecise target memories that were encoded to
be like the probe prior to comparisons. This is not to say that memory
fidelity does not influence the perceived overlap between representa-
tions, but that variability in memory fidelity alone is not sufficient in
accounting for the memory errors that are associated with a given
subjective judgment.

Then what other processes can plausibly contribute to the observed
variability in perceptual comparisons? One possibility is that judg-
ments during perceptual comparisons are influenced by general cog-
nitive states that carry over from prior behavior. Multiple studies have
demonstrated that performing recognition judgments can bias the
memory system in or out of a discriminatory state and that this change
in state can influence subsequent recognition judgments (e.g., Duncan
et al., 2012; Patil & Duncan, 2018). Interestingly, these processing
biases are shown to be especially influential when memories and per-
ceptual inputs are similar, but not identical. A change in one’s cogni-
tive state may therefore act as an additional impetus that can lead to
different subjective judgments during perceptual comparisons, even
when memory precision and stimulus distance are comparable.
Future work should investigate the serial nature of perceptual compar-
isons by carefully manipulating the overlap between visual represen-
tations across trials in an attempt to exploit a possible carryover effect.

In addition to providing a better predictive framework of per-
ceived overlap, it will be necessary to formalize the observed mem-
ory updating processes in a more precise manner. In the present
study, JD and MD models were constructed to compare the relative
fit between two dissociable memory updating mechanisms to the
systematic errors observed in participants’ memory reports. We
leveraged the same model formalizations that have been used previ-
ously to elucidate similarity-induced memory biases (Fukuda et al.,
2022; Saito et al., 2022). However, some findings in the present
study suggest that there may have been additional interactions
between the target and probe that were not accounted for in these
parsimonious versions of the models. For example, the distribution
of memory reports observed following “same” judgments in the
15° probe condition was not centered at 15° in the feature space,
despite the MD model’s assumption that perceived sameness trig-
gers replacement by the probe. This may be because the current
implementation of the MD model does not account for biases in
the perception of the probe that may have been induced by the target
before memory replacement occurred. Previous studies have shown
that incoming visual percepts can be proactively biased by previous
percepts that are maintained in VWM (Kang et al., 2011; Olkkonen
& Allred, 2014; Scocchia et al., 2013) and those that have already
been discarded (Bae & Luck, 2019, 2020; Fischer & Whitney,
2014; Fritsche et al., 2017). In the present experiments, actively
maintaining the target in VWM may have resulted in a proactive
bias in participants’ perception of the probe that caused it to appear
more similar to the target than it actually was. As a result, when the
probe replaced the target in VWM, the resulting memory report was
always slightly offset from the true location of the probe in the direc-
tion of the target. This proactive influence on the probe representa-
tion may have even caused the memory representation to replace
the probe representation in some trials. Future studies should seek

to address the role of serial dependence in the present paradigm by
measuring proactive biases and then using those empirical estimates
to fit the models accordingly. In doing so, it may be revealed that the
frequency of memory replacement was underestimated in the present
study by fitting the models with the physical location of the probe
rather than its perceived location.

Some may also wonder whether the outcomes of the model com-
parisons reported here depend on the assumed psychophysical prop-
erties of VWM. Here, JD and MD models were constructed
following the assumptions of conventional models of VWM
which state that the psychophysical similarity between stimuli in a
given feature space is linearly related to their physical similarity
(e.g., Zhang & Luck, 2008). However, recent research has chal-
lenged this conventional modeling assumption by demonstrating
that psychophysical similarity is actually nonlinearly related to phys-
ical similarity (Schurgin et al., 2020). While nonlinearity in psycho-
physical scaling does not necessarily invalidate the model
comparisons reported here, it is important to consider what role, if
any, psychophysical scaling plays in representational integration
and replacement. In the online supplemental materials, we report a
replication of our model comparisons for color stimuli in
Experiment 1 using the same psychophysical scaling properties
and assumptions made by the target confusability competition
(TCC) model that was proposed by Schurgin et al. (2020) to account
for nonlinearity in the global similarity structure (but see also,
Oberauer, 2023; Tomi¢ & Bays, 2022). The results of the model
comparison were not only replicated, but the TCC formulation of
the JD and MD models produced best-fitting distributions that
were very similar to those produced here. This suggests that, despite
meaningful theoretical differences between the TCC model and con-
ventional models of VWM, both frameworks provide a common
conclusion regarding the memory updating processes tied to per-
ceived sameness and similarity. Future work should seek to further
extend these findings by replicating the model comparisons reported
in Experiment 2 after precisely mapping the psychophysical scaling
within the shape space.

Lastly, it will be useful for future work to build on these findings by
testing the representational boundaries that perceptual comparisons
operate within. While the distorting effect of perceptual comparisons
has been illustrated in simple visual features (Fukuda et al., 2022;
Saito et al., 2022), real-world objects (Saito et al., 2023), and
human faces (Teoh et al., 2021; see also Plummer et al., 2021), no
study has tested the effect of performing perceptual comparisons
between event representations that are perceived in different sensory
modalities. An overwhelming majority of studies on the misinforma-
tion effect have implemented paradigms in which false details about a
prior visual experience are provided verbally to participants (see
Loftus, 2005 for review). In the seminal experiment conducted by
Loftus et al. (1978), postevent misinformation that was read by partic-
ipants led to reliable misremembering of a street sign that they saw
during a slide show depiction of an automobile accident. While stud-
ies like Loftus et al. (1978) confirm that memory misattribution can
occur for individual objects embedded within events, it remains
unclear how perceptual comparisons are executed when stimuli are
drawn from different modalities. One possibility is that individuals
form a parallel visual representation of verbal postevent inputs in
order to facilitate more direct comparisons with their visual memory
of the event. Researchers have shown that engaging in the visual
imagery of a verbal stimulus can lead to more false memories than
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when imagery is not used (e.g., Gonsalves & Paller, 2000; Gonsalves
et al., 2004). Future work should examine these cross-modal effects
more directly by incorporating neuroimaging techniques that can
characterize the representational state of memories and perceptual
Inputs.

Constraints on Generality

In addition to the limitations described above, it is critical that future
work clarify the generality of these findings to other human popula-
tions and other types of stimuli. In the present study, we show that
young adults’ working memory for a visual stimulus undergo distinct
types of updating as a consequence of performing perceptual compar-
isons with new visual inputs. Given well-established age-related
declines in WM performance (e.g., Peich et al., 2013; Pertzov et al.,
2015), future studies should test whether our results extend to older
adult populations as well. Such investigations should help to further
elucidate the link between WM performance and the two types of
memory updating described here. Additionally, future studies should
examine how perceptual comparisons influence other types of memory
representations beyond visual working memories, such as episodic
memories and those from other sensory modalities (e.g., auditory
memories). As mentioned above, such studies will provide critical
observations to evaluate the role of perceptual comparisons as a
domain-general mechanism of memory updating.

Conclusion

We used a delayed-estimation paradigm to show that comparing
visual memories with new visual inputs can result in different
types of memory updating. Across behavior, simulations, and com-
putational modeling, we show that these distinct patterns of memory
updating depend on the distinct judgments that individuals make
during comparisons. These findings corroborate and extend mount-
ing evidence that the use of a VWM in task-relevant behavior holds
significant implications for the accuracy of the memory thereafter.
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